
Assuring Real-World Differential 
Privacy
José Manuel Calderón Trilla
Scott Moore



© 2019 Galois, Inc.

Motivation for Differential Privacy



© 2019 Galois, Inc.

Motivation for Differential Privacy
• We want to learn facts about populations without revealing anything 

new about individuals



© 2019 Galois, Inc.

Motivation for Differential Privacy
• We want to learn facts about populations without revealing anything 

new about individuals
• Differential Privacy can make up one part of a system that 

accomplishes this



© 2019 Galois, Inc.

Motivation for Differential Privacy
• We want to learn facts about populations without revealing anything 

new about individuals
• Differential Privacy can make up one part of a system that 

accomplishes this
• Confidentiality, policy enforcement, etc. all still important.



© 2019 Galois, Inc.

Motivation for Differential Privacy
• We want to learn facts about populations without revealing anything 

new about individuals
• Differential Privacy can make up one part of a system that 

accomplishes this
• Confidentiality, policy enforcement, etc. all still important.

• Differential Privacy provides a bound on the additional information 
that can be learned about an individual if they choose to take part in 
an analysis



© 2019 Galois, Inc.

Motivation for Differential Privacy
• We want to learn facts about populations without revealing anything 

new about individuals
• Differential Privacy can make up one part of a system that 

accomplishes this
• Confidentiality, policy enforcement, etc. all still important.

• Differential Privacy provides a bound on the additional information 
that can be learned about an individual if they choose to take part in 
an analysis

• Information could still be learned via other means! e.g., if you 
are statistically similar to a population that takes part, the 
computation will still reveal some information about you



© 2019 Galois, Inc.

Motivation for Differential Privacy
• We want to learn facts about populations without revealing anything 

new about individuals
• Differential Privacy can make up one part of a system that 

accomplishes this
• Confidentiality, policy enforcement, etc. all still important.

• Differential Privacy provides a bound on the additional information 
that can be learned about an individual if they choose to take part in 
an analysis

• Information could still be learned via other means! e.g., if you 
are statistically similar to a population that takes part, the 
computation will still reveal some information about you

• Differential privacy as a bound on relative risk



© 2019 Galois, Inc.

What does it mean to verify DP?



© 2019 Galois, Inc.

What does it mean to verify DP?
• A few interesting questions (Gaboardi, 2018):



© 2019 Galois, Inc.

What does it mean to verify DP?
• A few interesting questions (Gaboardi, 2018):

• Given a Program, P, is P differentially private?



© 2019 Galois, Inc.

What does it mean to verify DP?
• A few interesting questions (Gaboardi, 2018):

• Given a Program, P, is P differentially private?
• Given a differentially private program, DP, does DP maintain its 

privacy/accuracy guarantees?



© 2019 Galois, Inc.

What does it mean to verify DP?
• A few interesting questions (Gaboardi, 2018):

• Given a Program, P, is P differentially private?
• Given a differentially private program, DP, does DP maintain its 

privacy/accuracy guarantees?
• Does DP perform its computation efficiently?



© 2019 Galois, Inc.

What does it mean to verify DP?
• A few interesting questions (Gaboardi, 2018):

• Given a Program, P, is P differentially private?
• Given a differentially private program, DP, does DP maintain its 

privacy/accuracy guarantees?
• Does DP perform its computation efficiently?

• The answer to any of these could be seen as ‘verifying’ some aspect 
of a Diff. Priv. system



© 2019 Galois, Inc.

Traditional Verification



© 2019 Galois, Inc.

Traditional Verification
• Correct-by-construction



© 2019 Galois, Inc.

Traditional Verification
• Correct-by-construction

• Often type-system-based (Fuzz, CompCert, DeepSpec)



© 2019 Galois, Inc.

Traditional Verification
• Correct-by-construction

• Often type-system-based (Fuzz, CompCert, DeepSpec)
• Static Analysis



© 2019 Galois, Inc.

Traditional Verification
• Correct-by-construction

• Often type-system-based (Fuzz, CompCert, DeepSpec)
• Static Analysis

• Abstract interpretation (Astree, Infer, ErrorProne)



© 2019 Galois, Inc.

Traditional Verification
• Correct-by-construction

• Often type-system-based (Fuzz, CompCert, DeepSpec)
• Static Analysis

• Abstract interpretation (Astree, Infer, ErrorProne)
• State-space exploration



© 2019 Galois, Inc.

Traditional Verification
• Correct-by-construction

• Often type-system-based (Fuzz, CompCert, DeepSpec)
• Static Analysis

• Abstract interpretation (Astree, Infer, ErrorProne)
• State-space exploration

• Model-Checking (often used in Circuit design, increasingly 
used in software)



© 2019 Galois, Inc.

Traditional Verification



© 2019 Galois, Inc.

Traditional Verification
• To rephrase: There’s no such thing as ‘proving a program is correct’, 

it’s really ‘proving a program meets specification X’



© 2019 Galois, Inc.

Traditional Verification
• To rephrase: There’s no such thing as ‘proving a program is correct’, 

it’s really ‘proving a program meets specification X’
• Instead of “is program P correct?”, we ask “Does program P perform 

an out-of-bounds array access?”



© 2019 Galois, Inc.

Traditional Verification
• To rephrase: There’s no such thing as ‘proving a program is correct’, 

it’s really ‘proving a program meets specification X’
• Instead of “is program P correct?”, we ask “Does program P perform 

an out-of-bounds array access?”
• This we can verify, our program is now ‘verified’, but it does not 

mean the program does what it is meant to do!



© 2019 Galois, Inc.

Traditional Verification
• To rephrase: There’s no such thing as ‘proving a program is correct’, 

it’s really ‘proving a program meets specification X’
• Instead of “is program P correct?”, we ask “Does program P perform 

an out-of-bounds array access?”
• This we can verify, our program is now ‘verified’, but it does not 

mean the program does what it is meant to do!
• We are already comfortable with this nuance with regards to static 

types and garbage collection (i.e. we rule out certain and specific 
problems)



© 2019 Galois, Inc.

Traditional Verification
• To rephrase: There’s no such thing as ‘proving a program is correct’, 

it’s really ‘proving a program meets specification X’
• Instead of “is program P correct?”, we ask “Does program P perform 

an out-of-bounds array access?”
• This we can verify, our program is now ‘verified’, but it does not 

mean the program does what it is meant to do!
• We are already comfortable with this nuance with regards to static 

types and garbage collection (i.e. we rule out certain and specific 
problems)

• Historically, not very good at probabilistic reasoning, which is why we 
are here!



© 2019 Galois, Inc.

Fuzz-like



© 2019 Galois, Inc.

Fuzz-like



© 2019 Galois, Inc.

Fuzz-like
• Anyone who gets a fuzz program past the type checker has a 

‘good’ program. That’s great!



© 2019 Galois, Inc.

Fuzz-like
• Anyone who gets a fuzz program past the type checker has a 

‘good’ program. That’s great!
• You are tied to fuzz-the-language



© 2019 Galois, Inc.

Fuzz-like
• Anyone who gets a fuzz program past the type checker has a 

‘good’ program. That’s great!
• You are tied to fuzz-the-language
• Only a specific set of primitives



© 2019 Galois, Inc.

Fuzz-like
• Anyone who gets a fuzz program past the type checker has a 

‘good’ program. That’s great!
• You are tied to fuzz-the-language
• Only a specific set of primitives
• Limited inter-op with other systems



© 2019 Galois, Inc.

PINQ/Airavat-like



© 2019 Galois, Inc.

PINQ/Airavat-like
• “Just works”…



© 2019 Galois, Inc.

PINQ/Airavat-like
• “Just works”…
• … if your computation fits their model



© 2019 Galois, Inc.

Formalized Model à la CompCert



© 2019 Galois, Inc.

Formalized Model à la CompCert



© 2019 Galois, Inc.

Formalized Model à la CompCert
• You had a differential privacy problem



© 2019 Galois, Inc.

Formalized Model à la CompCert
• You had a differential privacy problem
• Now you have a differential privacy problem and a theorem prover 

problem.



© 2019 Galois, Inc.

Correct By Construction



© 2019 Galois, Inc.

Correct By Construction
• Lots of current research focuses on correct by construction



© 2019 Galois, Inc.

Correct By Construction
• Lots of current research focuses on correct by construction
• Fantastic for..



© 2019 Galois, Inc.

Correct By Construction
• Lots of current research focuses on correct by construction
• Fantastic for..

• prototyping and/or building from the ground up



© 2019 Galois, Inc.

Correct By Construction
• Lots of current research focuses on correct by construction
• Fantastic for..

• prototyping and/or building from the ground up
• experts in formal methods and correct-by-construction 

techniques.



© 2019 Galois, Inc.

Correct By Construction
• Lots of current research focuses on correct by construction
• Fantastic for..

• prototyping and/or building from the ground up
• experts in formal methods and correct-by-construction 

techniques.
• What about everyone else?



© 2019 Galois, Inc.

Differential Privacy In The Wild



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Apple



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Apple

• Device usage statistics (what apps are popular, which health 
metrics are most used, etc)



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Apple

• Device usage statistics (what apps are popular, which health 
metrics are most used, etc)

• Google (Chrome)



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Apple

• Device usage statistics (what apps are popular, which health 
metrics are most used, etc)

• Google (Chrome)
• Browser usage statistics



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Apple

• Device usage statistics (what apps are popular, which health 
metrics are most used, etc)

• Google (Chrome)
• Browser usage statistics

• Census



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Apple

• Device usage statistics (what apps are popular, which health 
metrics are most used, etc)

• Google (Chrome)
• Browser usage statistics

• Census
• 2020 Disclosure Avoidance



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Apple

• Device usage statistics (what apps are popular, which health 
metrics are most used, etc)

• Google (Chrome)
• Browser usage statistics

• Census
• 2020 Disclosure Avoidance

• Uber



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Apple

• Device usage statistics (what apps are popular, which health 
metrics are most used, etc)

• Google (Chrome)
• Browser usage statistics

• Census
• 2020 Disclosure Avoidance

• Uber
• Trip data



© 2019 Galois, Inc.

Differential Privacy In The Wild



© 2019 Galois, Inc.

Differential Privacy In The Wild
• These are big multi-part systems



© 2019 Galois, Inc.

Differential Privacy In The Wild
• These are big multi-part systems
• Unlikely that entire systems would be built with formal techniques



© 2019 Galois, Inc.

Differential Privacy In The Wild
• These are big multi-part systems
• Unlikely that entire systems would be built with formal techniques
• How do we guarantee properties when presented with a large system 

built in many languages?



© 2019 Galois, Inc.

Differential Privacy In The Wild



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Prioritize



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Prioritize
• Divide and Conquer



© 2019 Galois, Inc.

Differential Privacy In The Wild



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Determine aspects that are most crucial to the system



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Determine aspects that are most crucial to the system

• For example: core differentially private mechanism



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Determine aspects that are most crucial to the system

• For example: core differentially private mechanism
• Determine property that is most important



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Determine aspects that are most crucial to the system

• For example: core differentially private mechanism
• Determine property that is most important

• For example: mechanism is implemented according to some 
spec (e.g. paper’s description of mechanism)



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Determine aspects that are most crucial to the system

• For example: core differentially private mechanism
• Determine property that is most important

• For example: mechanism is implemented according to some 
spec (e.g. paper’s description of mechanism)

• Use more adaptable techniques for ‘plumbing’



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Determine aspects that are most crucial to the system

• For example: core differentially private mechanism
• Determine property that is most important

• For example: mechanism is implemented according to some 
spec (e.g. paper’s description of mechanism)

• Use more adaptable techniques for ‘plumbing’
• Control-flow analysis to ensure that all released data passes 

through the verified mechanism



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Determine aspects that are most crucial to the system

• For example: core differentially private mechanism
• Determine property that is most important

• For example: mechanism is implemented according to some 
spec (e.g. paper’s description of mechanism)

• Use more adaptable techniques for ‘plumbing’
• Control-flow analysis to ensure that all released data passes 

through the verified mechanism
• Find high-level properties of the whole system



© 2019 Galois, Inc.

Differential Privacy In The Wild
• Determine aspects that are most crucial to the system

• For example: core differentially private mechanism
• Determine property that is most important

• For example: mechanism is implemented according to some 
spec (e.g. paper’s description of mechanism)

• Use more adaptable techniques for ‘plumbing’
• Control-flow analysis to ensure that all released data passes 

through the verified mechanism
• Find high-level properties of the whole system

• Use property-based testing to gain some assurance of those 
properties.



© 2019 Galois, Inc.

Example: Sensitivity



© 2019 Galois, Inc.

Example: Sensitivity
• Correctly accounting for the sensitivity of your system can be difficult.



© 2019 Galois, Inc.

Example: Sensitivity
• Correctly accounting for the sensitivity of your system can be difficult.
• Even with static guarantees about your software, there are meta-

concerns:



© 2019 Galois, Inc.

Example: Sensitivity
• Correctly accounting for the sensitivity of your system can be difficult.
• Even with static guarantees about your software, there are meta-

concerns:
• Program crashes and you add code to avoid that situation (S. 

Garfinkel got me thinking about this)



© 2019 Galois, Inc.

Example: Sensitivity
• Correctly accounting for the sensitivity of your system can be difficult.
• Even with static guarantees about your software, there are meta-

concerns:
• Program crashes and you add code to avoid that situation (S. 

Garfinkel got me thinking about this)
• You may have encoded data-dependent information in your 

control-flow!



© 2019 Galois, Inc.

Example: Sensitivity
• Correctly accounting for the sensitivity of your system can be difficult.
• Even with static guarantees about your software, there are meta-

concerns:
• Program crashes and you add code to avoid that situation (S. 

Garfinkel got me thinking about this)
• You may have encoded data-dependent information in your 

control-flow!
• Re-running algorithms for optimizations



© 2019 Galois, Inc.

Example: Sensitivity
• Correctly accounting for the sensitivity of your system can be difficult.
• Even with static guarantees about your software, there are meta-

concerns:
• Program crashes and you add code to avoid that situation (S. 

Garfinkel got me thinking about this)
• You may have encoded data-dependent information in your 

control-flow!
• Re-running algorithms for optimizations

• Are the optimizations data-dependent?



© 2019 Galois, Inc.

Conclusions



© 2019 Galois, Inc.

Conclusions
• Verification techniques for Differential Privacy are powerful and 

diverse.



© 2019 Galois, Inc.

Conclusions
• Verification techniques for Differential Privacy are powerful and 

diverse.
• Still work to be done on ‘whole system’ approaches



© 2019 Galois, Inc.

Conclusions
• Verification techniques for Differential Privacy are powerful and 

diverse.
• Still work to be done on ‘whole system’ approaches
• We can learn from how other large systems achieve high-assurance


